Typology and grammaticalization in the Papuan languages of Timor, Alor, and Pantar

MARIAN KLAMER

12.1 INTRODUCTION

Similar grammaticalization patterns found across languages do not come about by chance. They may arise because they were inherited from a common ancestor language, or because there are certain universal tendencies in human language structure and evolution that constrain grammaticalization (Narrog and Heine 2011a). Similar patterns in languages may also have diffused through a period of contact. How typology and universalistic tendencies in grammaticalization interact with sociohistorical factors is the issue addressed in this chapter.

This chapter investigates two grammaticalization patterns that are characteristic for the Timor-Alor-Pantar (TAP) family, a family of Papuan languages spoken in eastern Indonesia. The first process that is attested across the family is the grammaticalization of serial verbs into adpositions and verbal prefixes (section 12.2); the second process is the grammaticalization of nouns into numeral classifiers (section 12.3). These grammaticalization processes are cross-linguistically quite common, and I am not aware of any processes that are common in the TAP family and uncommon elsewhere. However, the fact that in the TAP family the grammaticalization of verbs ends in a plethora of applicative prefixes, and virtually no other type, is probably a special property of this family (see section 12.2.2).

I focus on the question how we can account for the similar patterns found in the languages of this family. More specifically: to what extent can we say that these similarities are due to the typological similarities between the members of this family? And what, if any, is the role of contact with Austronesian languages spoken in the region?

The Timor-Alor-Pantar (TAP) family comprises ~25 Papuan (or non-Austronesian) languages spoken on the islands of Timor, Alor and Pantar in eastern Indonesia.

(Figs 12.1 and 12.2) (Holton et al. 2012; Holton and Robinson 2014a, 2014b; Klamer 2014a). Note that the term ‘Papuan’ is not a genealogical term, but refers to a cluster of several dozains of unrelated language families that are not Austronesian, and are spoken on, or close to the Papuan mainland.

Four of the TAP languages are spoken on Timor and one on Kisar (Fig. 12.1); the rest are spoken on the islands of Pantar and Alor, just north of Timor (Fig. 12.2). The Austronesian (Malayo-Polynesian) languages discussed in this chapter are Tetun, spoken in central Timor (Fig. 12.1), Alorese, spoken on the coasts of Alor and Pantar (Fig. 12.2), and Lamaholot, spoken on east Flores and adjacent islands (Fig. 2.1).
Table 12.1. Alphabetic list of languages discussed in this chapter, with source, island, and affiliation

<table>
<thead>
<tr>
<th>Language</th>
<th>Source used</th>
<th>Island(s)</th>
<th>Genealogical affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alorese</td>
<td>Klamer (2011)</td>
<td>Pantar and Alor</td>
<td>Malayo-Polynesian</td>
</tr>
<tr>
<td>Abui</td>
<td>Kratochvíl (2007)</td>
<td>Alor</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Adang</td>
<td>Haan (2001), Robinson and Haan (2014)</td>
<td>Alor</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Blagar</td>
<td>Steinhauer (2014)</td>
<td>Pantar and Reta</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Bunaq</td>
<td>Schapper (2010)</td>
<td>Timor</td>
<td>Timor, TAP</td>
</tr>
<tr>
<td>Fataluku</td>
<td>van Engelenhoven (2009, 2010)</td>
<td>Timor</td>
<td>Timor, TAP</td>
</tr>
<tr>
<td>Indonesian</td>
<td>(everywhere)</td>
<td>Malayo-Polynesian</td>
<td></td>
</tr>
<tr>
<td>Kaera</td>
<td>Klamer (2014a)</td>
<td>Pantar</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Kamang</td>
<td>Schapper (2014)</td>
<td>Alor</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Kiraman(g)</td>
<td>Holton (2014a)</td>
<td>Alor</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Lamaholot</td>
<td>Nishiyama and Kelen (2007)</td>
<td>Flores, Solor, Adonara, Lembata</td>
<td>Malayo-Polynesian</td>
</tr>
<tr>
<td>Makalero</td>
<td>Huber (2011)</td>
<td>Timor</td>
<td>Timor, TAP</td>
</tr>
<tr>
<td>Makasai</td>
<td>Huber (forthcoming)</td>
<td>Timor</td>
<td>Timor, TAP</td>
</tr>
<tr>
<td>Sawila</td>
<td>Kratochvíl (2014)</td>
<td>Alor</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Teiwa</td>
<td>Klamer (2010a, 2010b, 2014c, 2014d)</td>
<td>Pantar</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Tetun</td>
<td>Hajek (2006)</td>
<td>Timor</td>
<td>Malayo-Polynesian</td>
</tr>
<tr>
<td>Wersing</td>
<td>Schapper and Hendery (2014)</td>
<td>Alor</td>
<td>Alor-Pantar, TAP</td>
</tr>
<tr>
<td>Western Pantar</td>
<td>Holton (2014b, 2014c)</td>
<td>Pantar</td>
<td>Alor-Pantar, TAP</td>
</tr>
</tbody>
</table>

Table 12.1 is an alphabetic list of the languages discussed or mentioned in this paper, with their location, affiliation, and source.

The Timor-Alor-Pantar region is a contact zone where speakers of Papuan and Austronesian speakers have been in contact for 3,000 years (Pawley 2005; Spriggs 2011), and loans from Austronesian have been borrowed into proto-Alor-Pantar (Holton et al. 2012). The islands are located over 1,000 km from the Papuan mainland and are surrounded by islands where Austronesian languages are spoken.

¹ To be more precise, these languages are part of the Malayo-Polynesian subbranch of Austronesian, and within Malayo-Polynesian, the languages of Eastern Indonesia are traditionally assumed to be part of the Central-Eastern Malayo-Polynesian (CEMP) subgroup (Blust 1993)—though this latter subgrouping has been debated (Donohue and Grimes 2008).
Moreover, Indonesian, the dominant national language of Indonesia, and a local variety of Malay² are Austronesian languages that are now spoken by virtually everyone on the islands. Given these ancient as well as ongoing contacts between TAP and Austronesian languages, any study of similarities across the TAP languages must also take into account the possible effects of language contact.

This chapter is structured as follows. The grammaticalization of verbs into adpositions and affixes is discussed in section 12.2. After outlining the typological features of the TAP family that are important to understand the grammaticalization of TAP verbs (12.2.1), I present three case studies of such grammaticalizations: the locational verb *mi ‘be in, at’ (12.2.2), the deictic verb *mai ‘come’ (12.2.3), and the handling verb *med ‘take’ (12.2.4), followed by a summary (12.2.5). The grammaticalization of nouns is discussed in section 12.3. I first sketch the evolution of numeral classifiers in TAP languages (12.3.1). Then I discuss the role that was played by contact with the local Austronesian languages Alorese and Tetun (12.3.2) and the national language Indonesian (12.3.3).

The most important difference between the evolution of deverbal adpositions and affixes and of denominal classifiers in TAP languages is the role of contact. In deverbal grammaticalization, an abundance of cognates is found across the TAP family, which enables us to reconstruct the evolution of adpositions and affixes back to the proto-language, while contact with Austronesian appears to have played no role at all in the diachronic change. In contrast, the denominal classifiers that are attested across the TAP family do not involve a single cognate form, and their evolution appears to be influenced by Austronesian quite significantly. It is suggested that the type and intensity of contact between TAP and Austronesian languages determined why the evolution of verbs into adpositions and prefixes is different from that of nouns into numeral classifiers.

12.2 Grammaticalization of Verbs to Adpositions and Affixes

12.2.1 Typological Features of TAP Languages

This section discusses the typological features of TAP languages that are relevant for the grammaticalization of verbs into adpositions and affixes. The major constituent order in TAP languages is Subject Object Verb (or SV, APV³). Adverbs of time and manner and adjunct phrases also precede the verb. Overall, the TAP languages have very few adpositions; some have none at all. In TAP languages, verbs are

² The Alor Malay variety is related to Kupang Malay, which in turn derived from trade Malay that was used as a trade language in the area for many centuries.

³ Abbreviations in glosses follow the Leipzig glossing rules: IND = Indonesian loan word; NSIT = New SITUation; S = single argument of intransitive predicate (verbal or non-verbal); A = most agent-like argument of a transitive clause; P = most patient-like argument of a transitive clause; R = recipient; T = displaced theme in a transfer event.
distinguished from adpositions in that verbs can take person markers and aspect and mood inflections, while postpositions do not take any inflectional affixes. Locations (in the village, from the garden, etc.) are often expressed as objects of locational or deictic verbs. An illustration is Kaera (1a), where the location abang ‘village’ is the object of the locational verb ming ‘to be at’. In contrast, in (1b), abang is expressed as part of a postpositional phrase, with the locative postposition mi. Note that the verb and postposition have similar forms that are probably etymologically related. I will return to this below.

Kaera (Klamer 2014b: 117, 113)

 ‘I am in the river.’

 b. [Abang mi]pp ga-dag.
 village LOC 3.SG-leave
 ‘Leave him/her in the village.’

Transitive verbs of location such as Kaera ming ‘to be at’ are commonly found in TAP languages, and it is a common strategy to express locations as objects of such verbs, as in (1a).

Another salient feature of TAP languages is the prevalence of serial verb constructions. Such constructions are analysed here as in Klamer (2014a: 27–8): two or more verbs that occur together in a single clause under a single intonation contour which share minimally one argument that is expressed maximally once. In the TAP languages, serial verb constructions are ‘core-layer’ serializations (Foley and Olson 1985). They are distinguished from bi-clausal constructions by the presence of a clause boundary marker in the latter.④ Serial verb constructions have many different functions; e.g. to encode manner (2), cause (3), and aspect (4). (In the examples below, the serial verb constructions are underlined.)

Western Pantar (Holton 2014: 82)

(2) Habbang mau aname horang sauке-yabe
village there person make.noise dance.lego-lego
‘Over there in the village people are making noise dancing lego-lego.’

Teiwa (Klamer 2010a: 305)

(3) A ta min-an ba’
3.SG TOP die-REAL fall.down
He died falling down.’

Teiwa (Klamer 2010a: 358)

(4) A bir-an gi awan awan tas-an gula’. . .
3.SG run-REAL go far.away far.away stand-REAL finish
‘She ran far away (and) stood [still] . . .’

④ A clause boundary marker is a conjunction/disjunction-like element, e.g. le in Teiwa (26) and a in Kaera (37), or an intonational break signalling the end of a clause, as in Klon (20).
Serial verbs are also used to introduce participants into the clause. For example, in Wersing (5), the first verb (V1) on ‘use’ introduces an instrument, in Kaera (6), V1 wang ‘be, exist’ introduces a goal and in Western Pantar (7), V1 haggi ‘take’ introduces the displaced theme. These V1s are analysed as verbs (rather than as e.g. postpositions) in these languages, as they can still function as independent predicates as well.

Wersing (Schapper and Hendery 2014: 491)

(5) *Imi pok kinai on ken ba g-pesi burik-a.*
man little knife use cloth DEF 3-cut snap-REAL
‘A young man cuts the cloth with a knife until it breaks.’

Kaera (Klamer 2014b: 138)

(6) *Ging kali-kali tei buxi gu wang ekeng*...
3.PL RDP-slow tree branch that be/exist climb.up
‘Slowly they climbed up onto that tree branch . . .’

Western Pantar (Klamer and Schapper 2012: 185)

(7) *Na-iti haggi na-nia.*
1.SG-glasses take 1.SG-give
‘Give me my glasses.’

Example (7) also illustrates another typical feature of TAP languages, namely, that transfer verbs (such as ‘give’) are mono-transitive, and their single object is the semantic recipient (R). In (7), R is indexed on the verb nia ‘give’ with a prefix, just as P is indexed on the verb pesi ‘cut’ in (5). As ditransitive verbs are generally lacking in TAP languages, transitive verbs just have two arguments.⁵

The examples presented above further show that verbs in TAP languages generally have little morphology. Verbs take a person prefix, but apart from that, few inflections are used. Tense is never marked, there is no active/passive morphology, no morphological finiteness distinctions, and few languages have a causative affix (Klamer 2014a: 30–33).

In sum, the typological features of the TAP family that are important to understand the grammaticalization of TAP verbs are: (i) preverbal position of arguments and adjuncts, (ii) paucity of adpositions, (iii) locations and directions as arguments of locational and deictic verbs, (iv) abundance of serial verb constructions, (v) lack of underived ditransitive verbs, and (vi) limited verbal morphology.

Given the overall morphological simplicity of verbs in TAP languages, it is striking to find at least four different applicative prefix forms in the family (see Table 12.2), some languages such as Sawila and Wersing having more than one applicative.

Applicative prefixes on verbs function to allow the coding of a thematically peripheral argument or adjunct as a core-object argument (Peterson 2007: 1). Applicative verbs in TAP languages license arguments with a wide range of semantic

⁵ Three-participant events may be expressed as (i) mono-clausal serial verb constructions, (ii) bi-clausal constructions, or (iii) particle–verb combinations; see Klamer and Schapper (2012).
roles, as illustrated in Table 12.3. For example, a Sawila applicative verb with prefix \textit{wii-} combines with an instrument or displaced theme, and a Sawila applicative with \textit{li-} licenses a location, or partially affected theme. Moreover, while the semantic range of arguments licensed by etymologically related affixes shows a common core, there are also many differences.

All the applicative prefixes can attach to both transitive and intransitive verbal bases. With intransitives, the prefix increases the valency of the verb by adding an argument, and this argument is semantically neither an agent nor a patient. For instance, \textit{mi-} (Table 12.2) introduces instruments, locations, goals, and affected themes, among other roles—never an agent or a patient. The most common argument
introduced by *mi-* is in fact a location. When *mi-* attaches to a monotransitive verb, the verb is not made more transitive (as ditransitive verbs are dispreferred in TAP languages), but results in the rearrangement of argument structure (Comrie 1985), where a peripheral participant is coded as a core-object argument.

Applicative affixes typically evolve from verbs or adpositions (Peterson 2007), and it is likely that the applicative prefixes in TAP languages in Table 12.2 all have a verbal source form. In the next section this is argued for the prefix *mi-*. I assume that similar cases can be made for the applicative prefixes *wii-, wa-, li-, le-, u-, and un-*, though this question will remain outside the current study. The type of grammaticalization where a serial verb ultimately becomes a prefix is cross-linguistically common. However, the fact that in the TAP family the grammaticalization ends in a plethora of applicative (and hardly any other) prefixes seems to be a unique property of this family.

12.2.2 THE DEVELOPMENT OF PROTO-TAP LOCATIONAL VERB *MI ‘BE IN, AT’*

This subsection is the first of three case studies of grammaticalizations of verbs in the TAP family. Here I discuss the evolution of the locational proto-verb *mi ‘be in, at’. The proto-verb is reconstructed on the basis of the cognate forms presented in Table 12.4. In the ten modern languages with reflexes of this form, *mi* functions as an applicative prefix, a locative postposition, or a locative verb.

In Makalero (8), Kamang (9), and Wersing (10), the only trace left of the proto-verb *mi* is an applicative prefix. In (8), it is illustrated how in Makalero the prefix licenses an (affected) theme argument (of *mi-ma’en ‘to understand X’) or a location. In Kamang (9) and Wersing (10) the argument licenced by *mi-* is a location.

<table>
<thead>
<tr>
<th>Language</th>
<th>Verb</th>
<th>Postposition</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makalero</td>
<td>*mi- ‘APPL’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamang</td>
<td>*mi- ‘APPL’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wersing</td>
<td>*mi- ‘APPL’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Pantar</td>
<td>*me ‘LOC’</td>
<td>=*mi, mi ‘in; to; into; from’</td>
<td></td>
</tr>
<tr>
<td>Blagar</td>
<td>*me ‘be in’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teiwa</td>
<td>*me ‘be in’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abui</td>
<td>*mia ‘be in’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaera</td>
<td>*ming ‘be in, at’</td>
<td>*mi ‘in; at; to; with’</td>
<td></td>
</tr>
<tr>
<td>Adang</td>
<td>*mi ‘be in, at’</td>
<td>*mi ‘in, at’</td>
<td></td>
</tr>
<tr>
<td>Klon</td>
<td>*mi ‘be at, to place’</td>
<td>*mi ‘LOC’</td>
<td>*mi- ‘APPL’</td>
</tr>
</tbody>
</table>

This subsection is the first of three case studies of grammaticalizations of verbs in the TAP family. Here I discuss the evolution of the locational proto-verb *mi ‘be in, at’. The proto-verb is reconstructed on the basis of the cognate forms presented in Table 12.4. In the ten modern languages with reflexes of this form, *mi* functions as an applicative prefix, a locative postposition, or a locative verb.

In Makalero (8), Kamang (9), and Wersing (10), the only trace left of the proto-verb *mi* is an applicative prefix. In (8), it is illustrated how in Makalero the prefix licenses an (affected) theme argument (of *mi-ma’en ‘to understand X’) or a location. In Kamang (9) and Wersing (10) the argument licenced by *mi-* is a location.

<table>
<thead>
<tr>
<th>Language</th>
<th>Verb</th>
<th>Postposition</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makalero</td>
<td>*mi- ‘APPL’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamang</td>
<td>*mi- ‘APPL’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wersing</td>
<td>*mi- ‘APPL’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Pantar</td>
<td>*me ‘LOC’</td>
<td>=*mi, mi ‘in; to; into; from’</td>
<td></td>
</tr>
<tr>
<td>Blagar</td>
<td>*me ‘be in’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teiwa</td>
<td>*me ‘be in’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abui</td>
<td>*mia ‘be in’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaera</td>
<td>*ming ‘be in, at’</td>
<td>*mi ‘in; at; to; with’</td>
<td></td>
</tr>
<tr>
<td>Adang</td>
<td>*mi ‘be in, at’</td>
<td>*mi ‘in, at’</td>
<td></td>
</tr>
<tr>
<td>Klon</td>
<td>*mi ‘be at, to place’</td>
<td>*mi ‘LOC’</td>
<td>*mi- ‘APPL’</td>
</tr>
</tbody>
</table>
Makalero (Huber 2011: 234, 237, 254, 463, 470, 519, 690; Huber forthcoming: 20, 23, 42)⁶

(8) ma’en ‘know’ mi-ma’en ‘understand X’
naser ‘stand’ mi-naser ‘stand along X’
lolo ‘say’ mi-lolo ‘say in language X’
puna ‘look at’ mi-puna ‘watch/look over/look through X’
kerek ‘write’ mi-kerek ‘write along with X, copy something’

Kamang (Schapper 2014b: 328)

(9) Leon sukuu mi-ilai.
 Leon looked into the hole.’

Wersing (Schapper and Hendery 2014: 487)

(10) Wai aka mira mi-g-tati.
 ‘The goat is inside the fence.’

Note that in Wersing (10), the applicative prefix encloses the prefix g- indexing a third person, in this case the S wai ‘goat’ (Schapper and Hendery 2014: 485, 487). A morphological configuration like this, where a person prefix occurs within the scope of a valence-changing applicative prefix, goes against the commonly attested affix order, in which affixes with high relevance to the content of the verb (e.g. derivational affixes changing valence) occur closer to the verb stem than affixes with low relevance, such as (inflection-like) affixes with broad scope (cf. Bybee 1985). The pattern in (10), where a derivational prefix occurs further away from the verb stem than the person prefix, is therefore a counterexample to this generalization. In the case of Wersing, this aberrant order could arise because the applicative prefix was originally a separate V1 in a serial construction preceding the inflected verb (V2). Over time, V1 became prosodically dependent on the inflected verb following it, and became a prefix of the [prefix-V2] form.

In four of the TAP languages investigated here, no applicative prefix mi- is in use today. In Blagar and Western Pantar, the modern reflex of *mi functions as an adposition (11). In Teiwa (12) and Abui (13), it functions as a verb.

Western Pantar (Holton 2014a: 93)

(11) N-"iu ang me i-golang.
 1SG.POSS-mother market LOC PROG-return
 ‘My mother is returning from the market.’

Teiwa (Klamer 2010a: 69)

(12) Liu? ita’ ma’? A uyan me’.
 L. where be.in/at 3SG mountain be.in/at
 ‘Where is Liu? He is in the mountains.’

⁶ The Makalero prefix mi- is glossed as ‘along’ in Huber (2011). However, the similarities with prefixes mi- in related TAP languages and the derivations given in (8) suggest that it is an applicative.
Abui (Kratochvíl 2007: 391)

(13) Tipai Babi buku do di-ŋ afe-ŋ i, he-n ṃi a ... T.B. land PROX 3.A=see stay-PFV 3.LOC=see be.in

‘They stayed in the Tipai Babi area, and as they were there, …’

Languages where reflexes of *mi are used as both verb and adposition are Adang (14,15) and Kaera (1a,b). The Kaera examples below illustrate the semantic variability of the complements of Kaera ṃi: in (16) it marks a goal, in (17) and (18) an instrument, in (19) a theme.

Adang (Haan 2001: 403)\(^7\)

(14) Roni ip-l-e baang ṃi. R. go.down-DIR-DIST house be.in

‘Roni is down there at the house.’

Adang (Robinson and Haan 2014: 235)

(15) Na ?Arabah ṃi ṃi ḥ. 1SG.SBJ Kalabahi in sit/live

‘I live in Kalabahi.’

Kaera (Klamer 2014b: 117–18)

(16) Ui gu gang [abang ṃi] gi. person that 3.SG village MI go

‘That person goes to the village.’

Kaera (Klamer 2014a: 117–18)

(17) Ui gu gang [ped ṃi] tei patak-o. person that 3.SG machete MI wood cut-FIN

‘That person cut wood with a machete.’

Kaera (Klamer 2014a: 117–18)

(18) Gang [naxar ṃi] n-aas-o. 3.SG rice MI 1.SG-feed- FIN

‘S/he fed me (with) rice.’

Kaera (Klamer 2014a: 117–18)

(19) Gang [foto ṃi] na-taring. 3.SG photograph (IND) MI 1.SG-point.at

‘S/he showed me a picture.’

There is one TAP language that exhibits the entire grammaticalization continuum of *mi: Klon. In (20), Klon ṃi is an independent locational verb ‘to be at’ that takes the location lale Hwak weer ‘below Hwak river’ as object:

(20) Klon (Baird 2010: 197)

Lale Hwak weer ṃi. Ini gen agai taa. below H. river be.at 3.PL reach go sleep

‘[They] were at below Hwak river. They eventually went to sleep.’

\(^7\) The spelling of Haan (2001) has been adapted.
Klon *mi* can also be the first verb (V1) in a serial verb construction to introduce a locational argument, as in (21):

Klon (Baird 2010: 197)

(21) *Ini gen agai lale Hwak weer mi taa.*

3.PL reach go below H. river be.at sleep

‘They went until below Hwak river sleeping there.’

In (22a), Klon *mi* forms a particle–verb combination with the second verb in the serialization, as it cannot be fronted along with the locational expression, (22b). That is, *mi taa* in (22a) has become a single morphosyntactic unit, a kind of complex verb. However, *mi* can also function as an independent verb and form its own clause when it is not adjacent to *taa*, as was shown in (20).

Klon (Baird 2010: 197)

(22) a. *Lale Hwak weer ini gen agai mi taa.*

below H. river 3.NSG reach go be.at sleep

‘They went until below Hwak river sleeping there.’

b. *[Lale Hwak weer mi] ini gen agai taa.*

below H. river be.at 3.NSG reach go sleep

Not good for: ‘Until at below Hwak river they went to sleep.’

Klon *mi* can also function as a postposition, projecting separate PPs. This is illustrated in (23) with the PPs *makna mi* ‘from the past’ and *Lahtal ta mi* ‘at God above’. A more literal translation of (23) would be ‘...from the past, fate sits at God above [while] we’re dying’, where *mi* encodes a temporal and a locational adjunct.

Klon (Baird 2010: 200)

(23) ... *makna mi Lahtal ta mi tengtang mi~mih*⁹

past be.at God above be.at fate RDP-sit

* t-eebeer

RDP-1.NSG.INCL-die

‘...from the past God above decides our fate.’

Finally, Klon *mi* is also attested as a verbal prefix. In (24a), *mi* is a free verbal or adpositional element, encoding a location (*oot ‘room’*) and combining with the verb *uur ‘see’* in a serial or particle–verb construction. In (24b), *mi*- is a prefix licensing the instrument by which something is seen (*kacamata ‘glasses’).

⁸ The translation provided for (22a) and (21) by Baird (2010: 197) is identical, as these sentences are part of the argument that *mi* cannot be fronted along with the locational expression in (21). It is likely that (22a) has a focused location, which would render the English translation ‘Until below Hwak river they went sleeping there.’

⁹ There is currently no etymological relation between Klon *mih ‘sit’* and *mi ‘be at’. *Mih* is a reflex of proto-Alor-Pantar *mis*, proto TAP *mit ‘sit’* (Holton and Robinson 2014: 91; Schapper et al. 2014: 151), while *mi* is a reflex of the proto-TAP locational verb *mi ‘be in, at’*. There may be a relation between the proto-TAP posture verb and existential/locative verb (as is e.g. the case for Oceanic posture and existential/locative verbs: Lichtenberk 2002a), but in TAP the verbs have been different lexemes since the proto-stage of the language.
Klon (Baird 2010: 199)

(24) a. ...bo ga oot mi uur,...
 SEQ 3.ACT room be.at see
 ‘...and she looked into the room,...’

Klon (Baird 2010: 199)

b. Na kacamata mi-uur.
 1SG.ACT glasses (IND) APPL-see
 ‘I see with glasses.’

The Klon applicative prefix can also enclose a person prefix, as shown in (25). This configuration is similar to what we have seen in Wersing (10), and the historical trajectory is identical. In both languages, the V₁ mi in a serial construction came to fuse with the V₂ that already had a person prefix.

Klon (Baird 2008: 199)

(25) nal ‘observe’ mi-g-nal ‘APPL-3-observe’ ‘pick it [using something]’
 uuh ‘hold on hip’ mi-g-uuh ‘APPL-3-hold on hip’ ‘hold her on hip using cloth’

In sum, cognates of a locational lexeme *mi are found in ten languages across the TAP family, and a proto-TAP locational verb *mi ‘to be in, on’ can be reconstructed. The modern reflexes of *mi in Klon function as independent verb alongside more grammaticalized uses as locative adposition and applicative prefix. A careful comparison of the cognate forms found in the other languages suggests that their reflexes of the proto-verb *mi occupy different points on the continuum verb > postposition > prefix.

The head-final syntax and abundance of serial verb constructions in TAP languages played a crucial role in the grammaticalization of *mi: an original serial verb construction where mi has a preverbal argument NP and is followed by another verb ([NP mi-V V]) grammaticalized into a construction where mi became a locative adposition ([[NP mi][-p V]]) and/or an applicative verb ([NP [miApplicative-V]]). If in the latter construction the second verb already had a person prefix attached to it, this prefix became enclosed inside the applicative prefix.

12.2.3 THE DEVELOPMENT OF PROTO-TAP
DEICTIC VERB *MA ‘COME’

This subsection presents the second case study of verbal grammaticalization in the TAP family. Here I discuss the evolution of the deictic proto-verb *ma ‘come’, which is reconstructed on the basis of the cognate forms presented in Table 12.5. (A proto-form of this verb was reconstructed for proto-Alor Pantar in Holton et al. 2012: 115, but as cognates are also attested in the Timor languages, it is reconstructed here as a proto-TAP verb.)

10 Austronesian proto Malayo-Polynesian (MP) has *maRi ‘come’ and is older than proto TAP. As it is possible to reconstruct *ma ‘come’ to proto TAP, if this were an MP loan then it must have been borrowed at the proto-level of TAP. Proto-Oceanic has *mai ‘come’, but proto-Oceanic is much younger than proto TAP. The formal similarity may also be a coincidence.
The meaning of the reflexes of *ma combines a motion and a deictic component; i.e. ‘come here, come towards deictic centre’ (Klamer 2010b). Except for Makasae, all the TAP languages surveyed here use cognates of this verb as both independent verb (as in Teiwa (26)) and V₁ in a serial verb construction (as in Sawila (27), where V₁ me is a reflex of *mai).

Teiwa (Klamer 2010a: 326–37)

(26) **Ha’an la ma le na’an la wa?**
 2.SG FOC come or 1.SG FOC go
 ‘Are you coming or am I going?’

Sawila (Kratochvíl 2014: 362)

(27) **Ga-me tana mu likka dang gaapa=ma**
 3.I-come same.time tree large NFIL.one shadow=be.PROX
 ‘He came under [the shadow of] a large tree […]’

11 Adang ma ‘come toward speaker from nearby (same level)’.
12 The examples in Schapper (2014) contain three different forms for ‘come’: me (ex. 63, p. 317), maa (ex. 122, p. 338), and ma (ex. 123, p. 338). Given the vowel /a/ in the proto-verb *ma, I assume ma(a) to be basic shape of this verb. The alternative form with the vowel /e/ is homophonous with the defective verb me ‘take’ that functions as a postposition in Kamang (see Table 12.5).
13 This word is variously glossed as ‘come’ and ‘come.LEVEL’ (Steinhauer 2014: 161, 170).
14 This enclitic is glossed as ‘move’ in Steinhauer (2014: 169, 170, 174, 210) because synchronically in Blagar the relation between ma ‘come’ and =ma is not obvious. However, the similarities in form, semantics, and distribution of verbal and postpositional ma in Blagar and closely related Teiwa do suggest an etymological relation between the lexemes.
In Teiwa, Blagar, and Makasae, *ma has also developed a function as an adposition to encode oblique arguments, such as locations (28), sources (29), instruments (30), or displaced themes (31). The latter function is also observed for Blagar =ma, which cliticizes to the noun it marks as displaced theme, as illustrated in (32). The semantic role of the participant introduced by is largely determined by the semantics of the main verb of the serial verb construction; the reflexes of *ma just function to flag obliques.

Teiwa (Klammer 2010a: 326–37)

(28) Tami un Lius ga-siban ma tas.
 tamarind.tree while Lius 3.SG-behind OBL stand 'The tamarind tree is behind Lius.'

(29) Sangubal ma bir-an daa.
 Sangubal OBL run-REAL ascend 'The refugee(s) who ran up from Sangubal.'

(30) Uy nuk ped ma tei taxar.
 person one machete OBL wood cut 'Someone cuts wood with a machete.'

(31) Na-xala’ yir ma bif ga-mian hufa’.
 1s-mother water OBL younger.sibling 3.SG-put.at drink 'My mum gives water to the child to drink.'

Blagar (Steinhauer 2014: 211)

(32) Na buk=ma e panatu.
 1.SG.SUBJ book=OBL 2.SG.POSS send 'I sent a book to you.'

In Teiwa, Kamang, and Makalero, in certain contexts, reflexes of *ma are found that show more traces of the original ‘movement’ meaning of this deictic verb, by having functions that involve a metaphorical extension of the meaning of motion. For example, Teiwa ma can encode futures and hortatives as ‘motion in time’ (33, 34), and Makalero ma’u ‘come’ can encode a hortative (cf. (35) and (36)). In Kamang and Makalero, *ma only has this derived function; in Teiwa it is also used to flag obliques.

Teiwa (Klammer 2010a: 328)

(33) Ha ma nili pat-an.
 2.SG [come debt pay.back]-REAL 'You will pay back the debt.'

Teiwa (Klammer 2010a: 250)

(34) Ma pi-maran ma gi.
 come 1.PL.INCL-hut OBL go 'Let’s go to our hut.'

Makalero (Huber, forthcoming)

(35) Kiloo aite=ini ma’u.
 3.SG REC.PST=CONJ come 'He only just arrived.'
Grammaticalization in Papuan languages

Makalero (Huber 2011: 449)

(36) Ma’u fi Makalero lolo!
come 1.PL.INCL M. say
‘Let’s speak Makalero!’

In sum, the original verb *ma ‘come (here, to deictic centre)’ combines a motion with a deictic component. In most languages investigated here it grammaticalizes into an oblique adposition where the motion component has been ‘bleached’ completely and only the deictic semantics survive. However, in Teiwa it has developed into two different directions: one direction as an oblique adposition with bleached movement semantics, and another direction as a future and hortative marker that has kept the meaning of motion. (Klamer 2010a: 324–38 presents a full description of Teiwa ma and all its derived functions.)

The deictic proto-verb *ma ‘come’ has reflexes as main and serial verb in thirteen TAP languages, but evolved into a postposition/enclitic in only three of them. There are thus far fewer languages showing the continuum from verb to adposition for *ma ‘come’ than there are for *mi ‘be in, at’ (section 12.2.2). Speculating about the reason for this difference, it may be the different semantic composition of the two verbs. It may be easier to develop an adposition from a original locational verb like *mi ‘be in, at’ because it involves less semantic bleaching than when the source verb is a deictic verb like *ma ‘come’. The latter verb contains information on both movement and location, and must bleach the movement component of its verbal semantics to become a locational adposition (cf. Klamer 2010a: 331–7).

12.2.4 THE DEVELOPMENT OF PROTO-TAP HANDLING VERB *MED ‘TAKE’

The third case study of grammaticalization of verbs in the TAP family is the development of the handling verb *med ‘take’. Reflexes of this verb are found in twelve TAP languages (see Table 12.6). In all languages the verb occurs frequently in serial constructions, and in three languages (Kaera, Blagar, Kamang) it also functions as a postposition, enclitic or suffix. In serial verb constructions, the verb is formally defective: it is phonologically reduced, and has lost some (but not all) of its verbal properties, such as being able to take person or aspect/mood inflections.

The ‘defective’ reflexes of *med in Teiwa, Kaera, Blagar, and Kamang are all phonologically reduced. The reduction may involve loss of voice in the final segment (Teiwa mar vs mat, Kaera med vs met), syllable contraction (Blagar medi vs met), or loss of the final segment (Kamang met vs me). They typically occur in serial verb constructions. This is illustrated for Kaera in (37), where the first clause is headed by the full verb med ‘take’, while in the second clause the ‘defective’ verb met ‘take’ is combined with mi and -(e)ng ‘give’. Met is formally reduced as the final consonant

15 The particle met is a contracted form of the inflected verb medi-t ‘take-MANNER’ (Steinhauer 2014: 211).
16 Teiwa mar is an exception to this: unlike mar it cannot take inflections, but like mar it can head an independent clause.
lost its voice and it has limited distributional properties: it can only occur as V1 of a serial verb, not as an independent main verb. Its semantics does not appear to be bleached (yet). The function of \(mi\) in this construction is unclear.

\[(37)\] Kaera (Klamer 2014a: 140)

\[
\text{Gang ge-topi } gu \text{ med } a, \\
3.\text{SG} \text{ 3.SG.ALIEN-hat that take CONJ} \\
\text{He takes that hat of his,} \\
\text{xabi mampelei utug } met \text{ mi kunang masik namung gu gi-ng.} \\
\text{then mango three take LOC children male PL that } 3.\text{PL-give} \\
\text{then takes three mangoes to give to the boys.'}
\]

A further grammaticalization stage is when the lexeme for 'take' is used as a postposition to license arguments. This stage is observed in Kaera, Blagar, and Kamang. In (38), Kamang \(me\) introduces an instrument, and in (39), it licenses the displaced theme in a construction with a mono-valent 'give' verb. Similar functions have been attested for Fataluku \(me\) (see van Engelenhoven 2010: 195–201), as illustrated in (40), where Fataluku \(me\) is reduced to \(\text{=m}\) and licenses the displaced theme of 'give'.

\[(38)\] Kamang (Schapper 2014: 341):

\[
\text{Nal isei maa kii } me \text{ maung-ma.} \\
1.\text{SG game edible palm.rib take } \text{make.hole-PFV} \\
\text{'I poked the meat with a palm rib.'}
\]

\[^{17}\] The verb \(me\) also has two allomorphs, \(eme\) and \(em\), containing a person prefix \(e\).

\[^{18}\] Makasae \(ma\) 'take' derives from \(*mei > *mai > ma\) 'take' (cf. Klamer and Schapper 2012).

\[^{19}\] Both forms can function as the verb 'take', but only \(mar\) can take person prefixes and realis suffixes.
Kamang (Schapper 2014: 302)

(39) Maria falak me ne-n.
M. cloth take 1SG.GEN-give
Maria gives me a cloth.

Fataluku (Klamer and Schapper 2012: 192)

(40) Markus akam lepuru=m an ina.
M. NEG book=take 1SG.OBL give
Marcus didn’t give me the book.

In (41), there are two Fataluku verbs ‘take’.

(41) ...mace-nu me [e-me ina] tu una
eat-NMLZ take it-take give SEQ eat
‘...give food to eat’

The stage involving two reflexes of *med, one of which is part of the VP with ‘give’, is taken one step further in Makalero. In Makalero, the second reflex of *med has been reduced to just a consonantal prefix m-. Makalero ‘give’ constructions are formed around the verb root -ini ‘give’, where a pronominal prefix encodes the recipient. This pronominal is prefixed to -ini, and together they form the host of the prefix m- that reflects the original *med lexeme (see Table 12.7). In other words, the deverbal prefix m- captures the pronominal prefix; it creates a full paradigm of univerbated ‘give’ with an entrapped recipient object prefix. An illustration is given in (42).

<table>
<thead>
<tr>
<th>Free pronouns</th>
<th>Underlying ‘give’</th>
<th>Surface ‘give’</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SG</td>
<td>ani</td>
<td>m-ani-ini</td>
<td>manini</td>
</tr>
<tr>
<td>2SG</td>
<td>ei</td>
<td>m-ei-ini</td>
<td>meini</td>
</tr>
<tr>
<td>3</td>
<td>ki-loo(ra)</td>
<td>Ø-ki-ini²</td>
<td>kini</td>
</tr>
<tr>
<td>1PL.EXCL</td>
<td>ini</td>
<td>m-ini-ini</td>
<td>minini</td>
</tr>
<tr>
<td>1PL.INCL</td>
<td>fi</td>
<td>Ø-fi-ini</td>
<td>fiini</td>
</tr>
<tr>
<td>2PL</td>
<td>ii</td>
<td>m-ii-ini</td>
<td>miini</td>
</tr>
</tbody>
</table>

² The absence of the initial m- on the 3rd person and 1st person inclusive reflects a restriction on onset clusters */mk/, */mf/.)
Marian Klamer (Klamer and Schapper 2012: 196)

(42) ... ası-osan hai muni m-an-ini
1SG.POSS-money NSIT return m-1SG-give
‘... (he) gave my money back to me’

In summary, in some languages, proto-TAP *med ‘take’ evolved into (formally reduced, defective) verbs in serial constructions and adpositions to encode additional arguments. In Fataluku and Makasae, the adposition merged with the second verb and its object prefix. Once this happened, a serial construction with a new verb me ‘take’ was created.

12.2.5 GRAMMATICALIZATION OF VERBS IN TAP AND LOCAL AUSTRONESIAN LANGUAGES

Three verbs were reconstructed for proto-TAP: *mi ‘be in, at’, *ma ‘come’, and *med ‘take’. These verbs show various stages of grammaticalization, and in some languages they developed into postpositions and verbal prefixes. On the comparative evidence we can reconstruct the following grammaticalization chain. When a verb has a preverbal argument NP and is followed by another verb in a serial verb construction ([NP V1 V2]), it can grammaticalize into a construction where V1 becomes a postposition ([NP P]PP V2) and/or an applicative prefix on V2 ([NP [prefixApplicative-V2]]). If V2 has a person prefix attached, this prefix may be enclosed inside the applicative prefix ([NP [prefixApplicative-prefixpersonV2]]).

This kind of deverbal grammaticalization is possible because of the typology of the TAP languages described in section 12.2.1: objects precede the predicate, underived ditransitive verbs are absent, there are few if any postpositions,²¹ and locations and directions are typically expressed as arguments of locational and deictic verbs; locations, directions, instruments, goals, sources, and comitatives precede the major verb in a serial verb construction, and there is an overall prevalence for such serial verb constructions. Furthermore, there is often little verb morphology to ‘betray’ the categorical status of verbs, or this morphology is lost, so that in a serial verb construction the V1 can easily be reinterpreted as an oblique marker and grammaticalize as a prefix on V2.

We can see the role of TAP typology in deverbal grammaticalization even more clearly when we compare the processes discussed for TAP with similar processes of deverbal grammaticalization in Austronesian languages of the region.

²¹ It has been suggested that there is a relation between the size of a language’s inventory of adpositions and the occurrence of serial verbs of different types, to the extent that languages lacking adpositions will use verbs to express the arguments of the clause (Bickerton 1981: 130–31). However, Crowley (2002) has shown that the correlation does not always hold, citing Austronesian (Oceanic) languages with few adpositions that lack serial verbs altogether, as well as languages that combine dozens of adpositions with numerous serial verbs. On the surface, the TAP languages appear to confirm the correlation, but in the typological profile of this family I sketch in this chapter, serialization is connected to many other features which all work together to create the morphosyntax of TAP languages.
I focus on three Austronesian languages that are currently spoken on Pantar, Alor, and Timor: Indonesian, the national language of Indonesia; Alorese, spoken on the western coasts of Pantar and Alor (Klamer 2011); and Tetun, the national language of East Timor (Hajek 2006). The following typological features of these languages are the opposite of those in TAP: the languages have verb–object order, and they have underived ditransitive verbs like ‘give’. The Alorese ‘give’ construction in (43) employs a ditransitive verb with two bare object NPs that follow the verb:

\[
\text{Alorese (Klamer 2011: 44)}
\]

\[
(43) \quad \text{Ama kali ning go bapa seng.}
\]

\[
\begin{align*}
\text{man that give.(to) 1.SG father money}
\end{align*}
\]

‘That man gave my father money.’

Austronesian languages commonly have at least a few prepositions, and they express locations and directions (as well as instruments, goals, sources and comitatives) as prepositional phrases that follow the main verb. Austronesian verbs have derivational morphology (applicative, causative, passive, active) to manipulate the verb’s argument structure and valency. Like the TAP languages, Austronesian languages in eastern Indonesia have prevalence for serial verb constructions where one verb may grammaticalize, but in the Austronesian languages of this region, the grammaticalizing verb is the second verb rather than the first.

Some illustrations are given for Indonesian in (44)–(47). Indonesian has prepositions projecting PPs, encoding comitatives, locations (44), sources and goals (45), and instruments (46). Such PPs follow the verb. In the variety of Indonesian spoken in eastern Indonesia, instruments can also be expressed as the object of the instrumental verb "pakai ‘use’, (47), which then occurs as V2 in a serial construction.

\[
\text{Indonesian (own knowledge)}
\]

\[
(44) \quad \text{Saya berbicara dengan dia di rumah.}
\]

\[
\begin{align*}
1.SG \text{ talk with him at home}
\end{align*}
\]

‘I talked with him at home.’

\[
(45) \quad \text{Saya lari ke/dari hutan.}
\]

\[
\begin{align*}
1.SG \text{ run to/from forest}
\end{align*}
\]

‘I run to / from the forest.’

\[
(46) \quad \text{Saya kejar babi dengan kayu.}
\]

\[
\begin{align*}
1.SG \text{ chase pig with stick}
\end{align*}
\]

‘I chased the pig with a stick.’

\[
(47) \quad \text{Saya kejar babi pakai kayu.}
\]

\[
\begin{align*}
1.SG \text{ chase pig use stick}
\end{align*}
\]

‘I chased the pig using a stick.’

In Indonesian, verbs do not typically grammaticalize into adpositions. However, in the indigenous Austronesian languages Alorese and Tetun some verbs underwent exactly this kind of grammaticalization. In Alorese, an Austronesian language spoken on the coasts of Pantar and Alor, instruments and comitatives are marked with a
preposition *nong* ‘with, and’, as illustrated in (48) and (49). There is good evidence that the source form of *nong* was a comitative verb *-ong* ‘to be with’. (The grammaticalized form is phonologically heavier than the original verb because it contains an old consonantal prefix *n-* ‘3SG’; see the evidence presented immediately below.)

Alorese (Klamer 2011: 80)

(48) *Ama to tari kaju nong peda.*
father one cut.down wood with/and machete
‘Someone cut the wood with a machete.’

(49) *Ama kali nei nong ni kafae.*
father that 3SG.go.to with/and POSS wife
‘That person went (there) with his wife.’

The evidence comes from a sister language of Alorese, Lamaholot, which is spoken on eastern Flores and the islands in between Flores and Pantar. Lamaholot has a cognate (and structurally defective) verb *-oʔon* ‘and, be with’. This verb can be used as a comitative predicate, with a prefix indexing the subject, as in (50a)—although such contexts also allow the use of a (default) 3SG singular prefix *n-* as in (50b). The lexeme *-oʔon* also functions as a conjunction in (51). In such cases, an obligatory default 3SG prefix attaches to it (Nishiyama and Kelen 2007: 105–12). The prefix no longer has a referential function in such contexts.²²

(50) Lamaholot (Nishiyama and Kelen 2007)

a. *Go səga k-oʔon mo.*
1.SG come 1.SG-be.with 2.SG
‘I came with you.’ (Nishiyama and Kelen 2007: 105)

b. *Go səga n-oʔon mo.*
1.SG come 3.SG-be.with 2.SG
‘I came with you.’ (Nishiyama and Kelen 2007: 105)

(51) *Mo belo n-oʔon baʔa.*
2.SG big 3.SG-be.with heavy
‘You’re big and heavy.’ (Nishiyama and Kelen 2007: 103)

In the Alorese word *nong* ‘and, with’, the original 3SG prefix *n-* has been fossilized as initial consonant, and the word has completely lost all of its verbal properties (cf. Klamer 2011). So the Alorese instrumental/comitative preposition is a grammaticalization of a comitative verb.

In Tetun, the national language of East Timor, some verbs also developed prepositional functions. One example is the handling verb *lori* ‘take’. When *lori* is used as a verb it is placed before the major verb in a serial construction, as in (52). But when it functions as an instrumental preposition it is placed after the verb, as in (53). As a preposition, it follows the TAM markers which may occur after the major verb, and

²² In Nishiyama and Kelen (2007) this item is variously described as ‘conjunction’, ‘preposition’, or ‘comitative’, but here it is analysed as a (structurally defective) verb on the basis of its agreement patterns.
always appears in the same position as oblique prepositional phrases at the end of the clause. In other words, when the original verb *lori* has become a preposition, it must occur at the end of the clause, to comply with the typical Austronesian pattern mentioned above that prepositional phrases follow the predicate.

Tetun (Hajek 2006)

(52) Abó *lori* tudik ko’a paun.
grandparent take knife cut bread

‘Grandfather used (lit. ‘took’) the knife to cut the bread.’ (Hajek 2006: 241)

(53) Abó ko’a paun *lori* tudik.
grandparent cut bread take knife

‘Grandfather cut the bread with the knife.’ (Hajek 2006: 244)

In sum, a serial verb construction in the Austronesian languages Alorese and Tetun ([(V1 NP V2 (NP))] may grammaticalize into a predicate plus PP construction ([(V1 (NP) [Prep NP]])]. In contrast, a serial verb construction in TAP languages ([NP V1 (NP) V2]) may grammaticalize into a PP plus predicate construction ([[NP Postp] (NP) V]). The typological characteristics of a family such as word order and lexical inventory of verbs and adpositions thus determine the outcome of grammaticalization in both families. Verbs with prefixes originating from verbs are only found in TAP languages because this development requires a configuration where the grammaticalizing verb is a V1 in a serial verb construction. In the Austronesian languages of the region, it is the V2 that grammaticalizes.

I have not found any evidence that the verb > postposition change in TAP has been affected by Austronesian structural features. In contrast, if any structural diffusion took place, it was probably in the other direction, from TAP into Austronesian. For instance, the serial verb construction with *lori* ‘take’ in Tetun that is used to express instrumental constructions and precedes the main verb (52) is probably a pattern that diffused from TAP substrate language(s), because instrumental constructions in Austronesian languages that employ a verb typically employ the verb ‘use’ rather than ‘take’, as shown in (47). Instrumental constructions with the verb ‘take’ are very rare in Austronesian, while they are used across the board in TAP.

12.3 GRAMMATICALIZATION OF NOUNS: NOUNS > NUMERAL CLASSIFIERS

12.3.1 THE DEVELOPMENT OF NOUNS INTO NUMERAL CLASSIFIERS

Numerical classifiers are attested across the TAP family, and this section presents an account on how they developed from nouns. Much of the discussion in this section is based on work published elsewhere (Klamer 2014b, 2014d) to which the reader is referred for further descriptive and analytical details. The sources for the descriptive data presented here are given in Table 12.1.
Numerical classifiers are morphemes that appear next to a numeral, and categorize the referent of a noun in terms of its animacy, shape, and other inherent properties (Aikhenvald 2006: 466). The numerical classifiers in TAP discussed in this chapter are sortal classifiers.

As no cognate forms of numerical classifiers have been attested in any of the TAP languages, we cannot reconstruct a classifier for proto-TAP. Apart from a classifier for humans, the various forms reported here show no similarities between the numerical classifiers in individual TAP languages. Languages also vary in the size of their classifier inventory. For instance, Adang has fifteen reported classifiers, Makalero has five, while Klon has three. There are also some TAP languages for which no classifiers have been attested; as in Bunaq and Kaera (see example (37)). In addition, in every language that has them, the classifiers use different types of categorizations. For instance, fruits are classified in Teiwa according to their shape, using a dedicated fruit classifier for long fruits (kam), cylindrical fruits (yis), or round fruits (quu) (Klamer 2014b, d). In contrast, Adang classifies fruits together with animals and humans using just a single classifier (pir) (Robinson and Haan 2014), while in Western Pantar, fruits are classified together with ‘contents’ (hissa), and in Klon, Kamang, and Makalero, fruits are not classified at all. Similar observations can be made for the diverse classification of animals or objects.

In addition to the high level of diversity in forms and functions of TAP numerical classifiers, they are also grammatically optional and often their source form is still in use as a noun. The lack of cognate forms, the high level of variation in classifier inventories and categorizations, and the grammatical optionality of classifiers in TAP languages together suggests that in this family, classifier systems are relatively recent developments that must have developed after the proto-language split up.

Classifiers in the Alor Pantar sub-family developed out of nouns (Klamer 2014b, 2014d), in particular from botanical nouns indicating the parts of plants, such as ‘fruit’, ‘leaf’, and ‘seed’. Such ‘part-of-whole’ (PoW) nouns are attested across the family, and cognates are found in many Alor-Pantar languages. An illustration is the cognate set of the proto-AP PoW noun *hera ‘stem, base’ (of a tree’) in (54).

<table>
<thead>
<tr>
<th>LANGUAGE</th>
<th>LEXEME</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Pantar</td>
<td>haila</td>
<td>‘base, area’</td>
</tr>
<tr>
<td>Teiwa</td>
<td>heir</td>
<td>‘stem, base’</td>
</tr>
<tr>
<td>Kaera</td>
<td>er</td>
<td>‘stem, base’</td>
</tr>
<tr>
<td>Blagar</td>
<td>era</td>
<td>‘base’</td>
</tr>
<tr>
<td>Adang</td>
<td>(s))el</td>
<td>‘rigid, standing object’</td>
</tr>
<tr>
<td>Klon</td>
<td>yar</td>
<td>‘trunk’</td>
</tr>
<tr>
<td>Abui</td>
<td>iya</td>
<td>‘trunk’</td>
</tr>
<tr>
<td>Kamang</td>
<td>ela</td>
<td>‘base’</td>
</tr>
<tr>
<td>Kiraman</td>
<td>yira</td>
<td>‘tree’</td>
</tr>
</tbody>
</table>

PoW nouns like these combine with generic nouns as illustrated in (55). Generic nouns have a general meaning and no referent in the real world. An example of a
generic noun is the Teiwa noun *wou* ‘mango-hood’. *Wou* is glossed as ‘mango-hood’ to indicate that it refers to anything related to mango-hood. On its own, it cannot be used as a referential expression, and it must be accompanied by a PoW noun in order to refer to certain particular parts of a mango-plant, as illustrated in (55a–d).

(55) Teiwa (Klamer 2014d: 153)

a. wou *bag* mango-hood seed
 ‘mango seed(s)’

b. wou *wa* mango-hood leaf
 ‘mango leaf (leaves)’

c. wou *qaau* mango-hood flower
 ‘mango flower(s)’

d. wou *heer* mango-hood stem
 ‘mango tree(s)’

Together, the PoW noun and the generic noun form a complex (compound) noun. This complex noun can then be individuated and counted. In numeral expressions, the numeral phrase follows the nominal head, (56).

(56) [N N] NUM

wou *bag yerig* mango-hood seed three
 ‘three mango seeds’

It is likely that classifiers developed out of the PoW nouns in a structurally ambiguous structure like the one in (56), as shown in (57). Through a simple (‘re-bracketing’) reanalysis of numeral NPs, the PoW noun *bag* was reanalysed to be part of the numeral phrase.

(57) Structural reanalysis of Teiwa *bag* ‘seed’ in the NP ‘three mango seeds’ (Klamer 2014d)

a. *Bag* as PoW noun

```
NP  
  N  
  N  
  NUM yerig '3'  
  N  
  wou  
  bag 'seed'
```

b. *Bag* as classifier

```
NP  
  NumP  
  CLF bag  
  NUM yerig '3'  
  N  
  wou
```

Another factor that must have played a role in allowing this reanalysis is the fact that in all the TAP languages, nouns are ‘number-neutral’. This means that bare nouns can have either a singular or a plural interpretation, and that number is not marked on nouns. This is illustrated in (58). In (58a) *qavif* ‘goat’ can be interpreted as singular or plural, depending on the context of the utterance. However, nominal
plurality can be made explicit with a separate lexeme, the plural number word *non* in (58b), where *qavif* cannot be interpreted as singular.

Teiwa (Klamer, Schapper, and Corbett 2014)

(58) a. *Qavif ita’a ma gi?*
 goat where come go
 ‘Where did the goat/goats go to?’

b. *Qavif non ita’a ma gi?*
 goat PL where come go
 ‘Where did the (several) goats go to?’

Plural number words like Teiwa *non* are lexemes whose meaning and function is similar to that of plural affixes in other languages (Dryer 1987). Cognates of plural number words are attested across Alor and Pantar, and a proto-form *non* can be reconstructed for proto-Alor Pantar (Klamer et al. 2014).

The number-neutral TAP languages have developed their classifiers in parallel processes that took place independently of one another. It has been observed (e.g. Gil 1987) that number-neutral languages often have numeral classifiers. The semantic motivation for this is that number-neutral languages are likely to develop classifiers to individuate their nouns, in order to create units for quantification and counting (cf. Thompson 1965; Link 1991; Gil 2011). In other words, nouns could become classifiers in TAP languages because classifiers are useful things to have when you want to individuate a number-neutral nominal expression. And the structure of the noun phrase allowed the reanalysis to take place, as we saw above.

However, if it was just the family-specific syntax and semantics that determined the development of classifiers in TAP, then why are there no more cognate classifiers and similar ways of classification attested in the individual TAP languages? In the evolution of verbs into adpositions discussed in section 12.2, cognate forms with similar meanings were found across the family members. Why do we not find more similarities in the classifiers of the family? In the next section I argue that this is because the classifiers are not inherited but rather contact-induced.

12.3.2 THE ROLE OF CONTACT WITH AUSTRONESIAN

As mentioned in section 12.1, the Timor-Alor-Pantar region is a contact zone where speakers of Austronesian and Papuan languages have been meeting for several millennia. This contact has played a role in the development of classifiers in the TAP languages. Proto-TAP lacked numeral classifiers, just as other Papuan families typically lack them: out of dozens of Papuan families, only a few have classifiers, and, crucially, these language groups are located in the Bird’s Head of Papua, Halmahera, and Timor Alor Pantar, regions that have had long-standing contacts with Austronesian languages (Klamer 2014d: 108–10). In other words, if we come across a Papuan

23 Teiwa *gi* ‘go (from deictic centre); cf. *wa* ‘go (from deictic centre; not far) in example (26) (Klamer 2010a: 49: 318).
language that has classifiers, the chances are very high that they are not inherited, but a diffused Austronesian trait. Note that classifier systems are in general easily diffused (Nichols 1992: 124–43), and as such they are often mentioned as markers for linguistic areas.

Contact with Austronesian speakers thus played a role in the development of classifiers in the Timor Alor Pantar languages. In addition, the intense contact with Indonesian in recent times is also a strong driving force, as I argue in the next section.

12.3.3 THE ROLE OF CONTACT WITH INDONESIAN

Indonesian, the national language of Indonesia, has been used in the TAP region as lingua franca and language of education since at least the late 1960s, and today it is spoken by almost everyone.

In Indonesian, sortal classifiers are obligatory in numeral contexts. Indonesian has a general classifier buah, which derives from the noun buah ‘fruit’. Buah classifies fruits, but when it is used as a general classifier it classifies three-dimensional objects such as cars (59). Buah is the ‘most general classifier [which] has almost lost any semantic, conceptual content’ (Hopper 1986: 23), and ‘classifies things that do not have definite types and shapes’ (Chung 2010: 553). In a similar way, Teiwa uses a general classifier bag, as in (60).

Indonesian (own knowledge)

(59) dua buah mobil
 two CLF car
 ‘two cars’

Teiwa (Klamer 2014d: 149)

(60) Qarbau bag ut
 water.buffalo CLF four
 ‘four water buffaloes’

General classifiers categorize entities that are semantically unrelated to the original meaning of their source form, and the semantics of the source form has been bleached. For example, the Teiwa classifier bag derives from the PoW noun meaning ‘seed’. As a general classifier it can classify everything except fruits, including all kinds of non-plant objects and animals (Klamer 2014d: 144–50). The original meaning ‘seed’ has disappeared completely; the classifier now just has an individuating function. General classifiers like this have been reported for a few other Alor Pantar languages, as shown in (61). The forms do not share etymologies.

(61) General classifiers in AP languages with source meaning and classification
 Western Pantar bina < ‘be detached’: classifies many different types of nouns, including fish and fruit.
 Teiwa bag < ‘seed’: classifies all objects except fruits, and animals.
 Adang pa’ < ‘non-round fruit’: classifies objects of many shapes and sizes, including arrows, drums, borrowed nouns, birds, fish.
 Kamang uh, with unknown etymology: its classification includes human beings and animals.
There is much inter- and intra-speaker variation in the use of general classifiers (cf. Klamer 2014d). This suggests that they are a relatively recent development. They probably arose following the example of Indonesian buah. Note however that Indonesian buah means ‘fruit’, and as a general classifier it classifies objects and fruits, but not animals. In contrast, the general classifiers in the AP languages do not derive from a noun meaning ‘fruit’ and can be used to classify animals, as shown by Teiwa bag. That is, neither the form, nor the meaning ‘fruit’, nor the classifying function of Indonesian buah has been diffused. Note that the word order of the numeral phrase in Indonesian and TAP languages has also remained different, in accordance with the basic word order in these languages.

(62) Numeral NPs in Indonesian and TAP languages
Indonesian: [Numeral CLF Noun]
TAP: [Noun [CLF Numeral]]

The only feature that TAP speakers adopted from Indonesian was the ‘idea’ of using a general classifier in numeral constructions. This is something that is typical for classification systems: the ‘idea’ of a classification system gets diffused, but not the forms or the structures. It is also typical to use native nouns as source forms for the grammaticalized classifiers (Seifart 2010: 20).

12.3.4 SUMMARY: GRAMMATICALIZATION OF NOUNS, TYPOLOGY, AND THE ROLE OF CONTACT

The grammaticalization of numeral classifiers out of nouns in TAP languages was possible because of the semantic and structural characteristics of nouns in this family. First, the number-neutral character of TAP nouns provides room to develop a strategy by which speakers can individuate and enumerate nouns. Second, the existence of generic nouns gives rise to compound nouns that combine generic nouns and part-of-whole nouns to become referential expressions. When such complex nouns are enumerated, the PoW noun occurs in an ambiguous position between generic noun and numeral, and is easily reanalysed to form a constituent with the latter rather than the former.

The process was probably caused or enhanced through contact with Austronesian languages, which typically have classifiers. In addition, the development of general classifiers in some of the languages spoken today suggests that speakers adopted the general classifying ‘idea’ of Indonesian buah, using a lexeme from their own language to express that idea.

²⁴ In the TAP languages of Alor-Pantar there is virtually no borrowing of Austronesian numeral words, while the TAP languages of Timor show more Austronesian influence in this domain (Klamer et al. 2014; Schapper and Klamer 2014). However, in the market, prices are usually quoted in Indonesian (in Alor, Pantar, and West Timor) or Tetun (in East Timor).
12.4 CONCLUSIONS AND DISCUSSION

Many similarities exist across the TAP family in the grammaticalization of verbs and nouns. In the evolution of deverbal forms, the lexical and syntactic typology of the family (constituent order, verbal inventory, verbal valency, and so on) played an important role. In the nominal domain, the existence of generic nouns, the number-neutral status of nouns, and the structure of NPs are important factors in the evolution of nouns into classifiers.

Language contact played a different role in the verbal and nominal domain. In the grammaticalization of verbs we see that many cognate forms are involved, while there is no evidence that the process is influenced by contact with Austronesian languages. The grammaticalization of nouns into classifiers, on the other hand, does not involve any cognates and is influenced by Austronesian. How can the different roles of contact in both domains be explained?

An Austronesian type of grammaticalization of TAP verbs would manifest itself as the grammaticalization of the second minor predicate (V2) of a serial verb and its object into a preposition plus complement (TAP serial verbs grammaticalize the first object and the minor V1, see section 12.2.5). In other words, for Austronesian type of deverbal grammaticalization to occur, some crucial elements of the TAP constituent order would have to change from head-final to head-initial structures. Such word-order changes can and do occur under contact, but they are always gradual, and the result of changing frequencies of certain patterns. In other words, emergent new word-order patterns become established patterns by slowly increasing their frequency of use across the speech community (Backus, Doğruöz, and Heine 2011). To become fully schematic and entrenched, a new word order must become the most frequent order in a speech community. This type of change needs intense, continued, and long-term contact, typically involving several centuries of bilingualism. In the Alor-Pantar region there has not been such long-term bilingualism with an Austronesian language; speakers are (were) instead bi- or trilingual in one or more neighbouring AP language(s). The current influence of Indonesian has not been intense enough to change word orders in AP languages, and hence the structural context of the grammaticalization of verbs in TAP also remained non-Austronesian. In the Timor region, the situation is more complex, and suggests influence from TAP on Austronesian, and the other way round. On the one hand, serial verb constructions of (a) TAP language(s) appear to have been calqued into Austronesian Tetun (cf. the construction with lori ‘take’, section 12.2.5), while there is also evidence of Austronesian VO word order being used in the ‘give’ construction of the TAP language Bunak (Klamer and Schapper 2012: 196–7).

Austronesian influences are quite obvious in the development of general classifiers in TAP languages. This change is a typical emergent contact-induced change (Backus et al. 2011): it involves the extension of existing patterns to wider contexts and desemanticization; but they are variable and grammatically optional, and in this sense the classifiers are not yet completely grammaticalized. Furthermore, no structure or form is transferred—only a classifier ‘idea’. Backus et al. (2011) argue
that emergent changes like these, which do not involve linguistic forms or patterns, only need one or two generations to happen.

In sum, the typology of TAP languages determines much of the grammaticalization of both verbs and nouns, but the type and intensity of the contact with Indonesian, or lack of it, also determines why structures in the verbal and nominal domain develop in different ways. Grammaticalization is not only determined by universal tendencies, nor by typology alone. Sociohistorical circumstances play an important role in setting certain chains of grammaticalization in motion. If and how contact influences grammaticalization can vary greatly, depending on the type and intensity of contact; and contact also affects the grammaticalization of verbs and nouns in very different ways.
References

410 References

Aikhenvald, Alexandra Y. 2011b. ‘Areal features and linguistic areas: contact-induced change and geographical typology.’ In Osamu Hieda, Christa König, and Hirosi Nakagawa (eds), Geographical typology and linguistic areas, with special focus on Africa, 13–39. Amsterdam: Benjamins.

Arabic Corpus Tool. http://arabicorpus.byu.edu
Ariel, Mira. 2000. ‘The development of person agreement markers: from pronoun to higher accessibility markers.’ In Michael Barlow and Suzanne Kemmer (eds), Usage-based models of language, 197–260. Stanford, Calif.: Center for the Study of Language and Information.
References

References

Bybee, Joan. 2006b. ‘From usage to grammar: the mind’s response to repetition.’ Language 82(4): 711–33.

References

Chirikba, Viacheslav. To appear. ‘From north to north west: how north-west Caucasian evolved from north Caucasian.’ Available at: academia.edu.

Coupe, Alexander R. In prep. 'Sangtam phonology and word list.'

Craig, Colette G. 1991. 'Ways to go in Rama: a case study in polygrammaticalization.' In Bernd Heine and Elizabeth Closs Traugott (eds), *Approaches to grammaticalization*, vol. 2: *Focus on types of grammatical markers*, 455–92. Amsterdam: Benjamins.

References

References

Dahl, Östen, and Bernard Wälchli. 2016. ‘Perfekts and iamitives: two gram types in one grammatical space.’ Letras de Hoje 51(3): 325. DOI: 10.15448/1984-7726.2016.3.25454

De Cat, Cécile. 2005. ‘French subject clitics are not agreement markers.’ Lingua 115: 1195–1219.

DeLancey, Scott. 2001. ‘Lexical categories.’ Lecture 2 of his Santa Barbara Lectures on Functional Syntax. The LSA Summer Institute, UC Santa Barbara. www.uoregon.edu/~delancey/sb/functiona1_syntax.doc

References

Dench, Alan, and Nicolas Evans. 1988. 'Multiple case-marking in Australian languages.'

Donegan, Patricia, and David Stampe. 2004. 'Rhythm and the synthetic drift of Munda.'
Yearbook of South Asian languages and linguistics 7: 3–36.

Dryer, Matthew S. 2013a. ‘Prefixing versus suffixing in inflectional morphology.’ In Matthew S. Dryer and Martin Haspelmath (eds), The world atlas of language structures online.
References

Dryer, Matthew S. 2013c. ‘Order of adposition and noun phrase.’ In Matthew S. Dryer and Martin Haspelmath (eds), The world atlas of language structures online. Leipzig: Max Planck Institute for Evolutionary Anthropology. www.acsu.buffalo.edu/~dryer/

References

Evans, Nicholas, and David Wilkins. 2000. 'In the mind’s ear: the semantic extensions of perception verbs in Australian languages.' *Language* 76: 546–92.

First Voices website: http://www.firstvoices.com/

References

Givón, Talmy. 1979b. 'Preliminary to any sane creology.' In Ian F. Hancock et al. (eds), Readings in creole studies, 3–35. Amsterdam: Benjamins.

Good, Jeff. 2012. 'How to become a “Kwa” noun.' Morphology 22(2): 293–335.

References

426 References

Hagège, Claude. 1990. ‘Do the classical morphological types have clear-cut limits?’ In Wolfgang U. Dressler, Hans C. Luschützky, Oskar E. Pfeiffer, and John R. Rennison (eds), Contemporary morphology, 297–308. Berlin: Mouton de Gruyter.

References

Heath, Jeffrey. 2015. 'D-possessives and the origins of Moroccan Arabic.' *Diachronica* 32(1): 1–33.

References

References

References

Hock, Hans Heinrich. 2016. ‘The languages, their histories, and their genetic classification.’ In Hans Heinrich Hock and Elena Bashir (eds), The languages and linguistics of South Asia: a comprehensive guide. Berlin: Mouton de Gruyter.

432 References

Jenny, Mathias. 2015. ‘The far west of Southeast Asia: “give” and “get” in the languages of Myanmar.’ In N. J. Enfield and Bernard Comrie (eds), The languages of mainland Southeast Asia: the state of the art, 155–208. Berlin: Mouton de Gruyter.

References

Johanson, Lars. 2002b. 'Contact-induced change in a code-copying framework.' In Mari Jones and Edith Esch (eds), Language change: the interplay of internal, external and extra-linguistic factors, 285–313. Berlin: Mouton de Gruyter.

Johanson, Lars. 2008. 'Remodeling grammar: copying, conventionalization, grammaticalization.' In Peter Siemund and Noemi Kintana (eds), Language contact and contact languages, 61–79. Amsterdam: Benjamins.

Johanson, Lars. 2015. 'Isomorphic processes: grammaticalization and copying of grammatical elements.' In Martine Robbeets and Hubert Cuyckens (eds), Shared grammaticalization: with special focus on the Transeurasian languages, 101–9. Amsterdam: Benjamins.

References

References

Korn, Agnes. 2009. 'Western Iranian pronominal clitics.' Orientalia Suecana 58: 159–71.

References

Laughren, Mary. 2002. ’Syntactic constraints in a ‘free word order’ language.’ In Mengistu Amberber and Peter Collins (eds), Language universals and variation, 83–130. Westport, Conn.: Praeger.

References

References

References

References

Michaelis, Susanne Maria, and Martin Haspelmath. To appear. ‘Grammaticalization in creole languages: accelerated functionalization and semantic imitation.’ https://www.linguistik.fb05.uni-mainz.de

References

Moyse-Faurie, Claire. 2015. ‘Valency classes in Xârâcùù (New Caledonia).’ In Andrej Malchukov and Bernard Comrie (eds), *Valency classes in the world’s languages*, vol. 2, 1015–68. Berlin: Mouton de Gruyter.

References

Næss, Åshild. 2004. 'Serial verbs and complex constructions in Pileni.' In Isabelle Bril and Françoise Ozanne-Rivierre (eds), Complex predicates in Oceanic language: studies in the dynamics of binding and boundness, 225–49. Berlin: Mouton de Gruyter.

Narrog, Heiko. 2014. 'The grammaticalization chain of case functions: extension and reanalysis of case marking vs. universals of grammaticalization.' In Silvia Luraghi and Heiko Narrog (eds), Perspectives on semantic roles, 69–97. Amsterdam: Benjamins.

Narrog, Heiko, and Bernd Heine. Forthcoming. 'Grammaticalisation.' In Adam Ledgeway and Ian Roberts (eds), The Cambridge handbook of historical syntax. Cambridge: Cambridge University Press.

Nordlinger, Rachel. 2011. ‘From body parts to applicatives.’ Handout of the talk at the 9th Biennial Meeting of the Association of Linguistic Typology, Hong Kong, July.

Panova, Anastasia. 2017. 'Služnye predikaty s elementom -5əša- v abazinskom jazyke: meždu morfologiej i sintaksisom' [Complex predicates with the element -5əša- in Abaza: between morphology and syntax]. Talk at the conference ‘Minority Languages in Big Linguistics’, Moscow State University, 2–3 Nov.
References

Paul, Ludwig. 2017. 'The case system of modern West Iranian languages in typological and historical perspective (with special reference to *radi).’ Presentation at the Seventh International Conference on Iranian Linguistics (ICIL7), Lomonosov Moscow State University, 28–30 Aug.

References

Price, Richard, and Sally Price. n.d. Transcriptions of folk tales obtained from Val Ziegler, recorded in the 1970s.

References

Robbeets, Martine, and Hubert Cuyckens. 2013. ‘Towards a typology of shared grammaticalization.’ In Martine Robbeets and Hubert Cuyckens (eds), Shared grammaticalization: with special focus on the Transeurasian languages, 1–20. Amsterdam: Benjamins.

Robert, Stéphane. 2004. ‘The challenge of polygrammaticalization for linguistic theory: fractal grammar and transcategorial functioning.’ In Zygmunt Frajzyngier, Adam Hodges, and
References

References

Simpson, Jane, and Ilana Mushin. 2012. 'Clause-initial position in four Australian languages.' In Ilana Mushin and Brett Baker (eds), Discourse and grammar in Australian languages, 25–58. Amsterdam: Benjamins

Sims-Williams, Nicholas. 1996. 'Eastern Iranian languages.' In Encyclopædia iranica VII, 649–52.

References

Stilo, Donald. 2009. 'Case in Iranian: from reduction and loss to innovation and renewal.' In Andrej Malchukov and Andrew Spencer (eds), The world atlas of language structures online. Leipzig: Max Planck Institute for Evolutionary Anthropology. http://wals.info/chapter/456

References

Tjurenkova, Margarita. 2013. Fieldwork report on possibility and necessity in Besleney Kabardian [in Russian].

References

Urusov, Xatali Š. 1983. ‘Preverby i napravitel’nye sufiksy v kabardino-čerkesskom jazyke’ [Preverbs and modificational suffixes in the Kabardian-Circassian language]. In Nurja T. Tabulova and Raisa X. Temirova (eds), Sistema preverbov i poslelogov v iberijsko-kavkazskix jazykax [Systems of preverbs and postpositions in the Ibero-Caucasian languages], 43–9. Čerkessk: Karäçevo-čerkesski NII istorii, filologii i èkonomiki.

Verenaun, Jacques. 2011. ‘Grammaticalization of Tahitian mea “thing, matter” into a stative aspect.’ In Claire Moysé-Faurie and Joachim Sabel (eds), Topics in Oceanic morphosyntax, 319–40. Berlin: Mouton de Gruyter.

References

